?

您现在的位置:首页 > 资讯 >

图灵奖得主Joseph Sifakis做客华东师大大师讲堂

2019-05-24 17:11编辑:侠名来源:中国新闻网


 
 
图灵得主Joseph Sifakis做客华东师师讲堂  
 

5月20日,图灵得主Joseph Sifakis应邀做客华东师大大师讲堂,为师生们带来了题为“Autonomous Systems-A Rigorous Architectural Characterization(自主系统——严谨的架构描述)”的学术报告,与师大师生及业界人士畅谈如何理解“自主系统”。

中科院院士、华东师大计算机科学与软件工程学院院长何积丰主持该项活动。

2007年,Joseph Sifakis被美国计算机协会(ACM)授予有“计算机界的诺贝尔奖”之称的图灵奖,以表彰其在模型检查理论和应用方面做出的卓越贡献。Joseph Sifakis是法国国家科研中心荣誉研究员、格勒诺布尔市Verimag实验室创始人,法国科学院院士、法国国家工程院院士、欧洲科学院院士、美国艺术与科学学院院士及美国国家工程院院士。研究领域主要包括系统设计的基本概念和应用,主要专注于系统设计的形式化,即根据特定的要求实现可信赖、最优化且构造正确的系统。

Joseph Sifakis首先介绍了自主系统的概念和基本组成(“智能体” Agent ,“对象” Object,“环境”Environment),提出“自主”是实现物联网愿景的关键所在。所谓“自主”,即在将智能服务更好地集成于系统的同时,最大限度地减少人为干预。通过使用温控系统、自动控制列车、象棋机器人等常见的应用实例,Joseph Sifakis解释了自主系统如何“自主”实现既定目标,并基于自主系统的发展现状,提出了下一代自主系统的主要特征以及面临的制约与挑战。

Joseph Sifakis着重讲述了他提出的一种结合系统构架模型和智能体模型的通用计算模型,该模型可以调理自主系统中“智能体” (Agent) 和“对象” (Object) 的关系,使得系统在不同的突发环境条件下,能够独立实现动态、可重构的多模式协调,从而自主完成任务。Joseph Sifakis提出的通用模型结合了五个维度,分别是感知、知识库、目标管理、规划和自适应,这五个维度构成了“自主复杂性”的概念。随后,他以美国汽车工程师学会(SAE)对自动驾驶的6个不同程度的自动化分级为例,形象对比了机器自主和人类辅助机器自主之间的差距,说明了构建自主系统的难度。

Joseph Sifakis 从自主复杂性、设计复杂性、反应复杂性和架构复杂性等方面,讨论了自主系统面临的复杂性问题。在他看来,严格的自主系统设计应该重视准确性并严格遵循开发流程,以达到“可信赖”(Trustworthiness) 的目标。在自主系统的构建中,不论是人工智能还是机器学习技术,都是不可或缺的,但现有的机器学习技术在模型的正确性证明方面仍有局限性。

同时,Joseph Sifakis 对其研究成果进行了概述:“自主”作为一种广泛的智能,不应只局限于特定的实现技术,而应强调系统的功能设计;“可信赖”的自主系统构建远远超过目前人工智能系统所面临的挑战,并发起了对下一代自主系统标准的讨论。

演讲结束后,现场师生进行了踊跃提问,如如何看待最近的波音737-MAX自动驾驶功能异常;智能化算法愈加复杂的情况下,如何保证机器学习的安全性;采用何种模型来规约“知识”,以及未来实现实时自动系统的关键是什么等问题,Joseph Sifakis都给予了耐心细致的回答。

大师与师大师生的对话:

客座教授Jean Raymond Abrial院士(2016年国家国际科技合作奖和2018年政府友谊奖获得者):最近关于波音737-MAX自动驾驶功能异常,使用您的通用计算模型是否可以解决或者处理这个问题?如何从科学和经济学的角度来考量这个问题?

Joseph Sifakis:这是个非常好的问题。从已有先例来看,如今工程师在设计系统时较少考虑人和系统的交互,这是个非常重要的问题。在自动系统中,要通过人和系统的合作共同完成同一个任务。系统可以整合复杂的场景信息,然后将控制权交给人。有些人认为与其关注人和系统共同控制的自动驾驶(自动化级别较低的驾驶),还不如全自动驾驶。在未来,如果人们都拥有全自动车辆,处理起来跟简单,我也认为的确如此。

马利庄教授(国家杰出青年科学基金获得者):我们正在做关于智能机器的研究,也和自动驾驶紧密相关。自动驾驶很复杂,需要越来越智能的算法,并且要求它可以自修改,而算法也越来越复杂,怎么保证它的安全性?


版权与免责声明

  • 凡本网注明"来源:九游经济网的所有作品,版权均属于中九游经济网,转载请必须注明中,http://www.canocal.com。违反者本网将追究相关法律责任。
  • 本网转载并注明自其它来源的作品,目的在于传递更多信息,并不代表本网赞同其观点或证实其内容的真实性,不承担此类作品侵权行为的直接责任及连带责任。其他媒体、网站或个人从本网转载时,必须保留本网注明的作品来源,并自负版权等法律责任。
  • 如涉及作品内容、版权等问题,请在作品发表之日起一周内与本网联系,联系邮箱:oubank008@gmail.com,否则视为放弃相关权利。




?


图说新闻

更多>>
法媒:法军特战队与美英结合在利比亚奥秘冲击IS

法媒:法军特战队与美英结合在利比亚奥秘冲击



?

幸运飞艇登陆网站

免责声明: 本站资料及图片来源互联网文章-|,本网不承担任何由内容信息所引起的争议和法律责任。所有作品版权归原创作者所有,与本站立场无关-|,如用户分享不慎侵犯了您的权益,请联系我们告知,-|我们将做删除处理!